Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Cell Biol ; 221(7)2022 07 04.
Article in English | MEDLINE | ID: covidwho-2082890

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal pathogen of the ongoing global pandemic of coronavirus disease 2019 (COVID-19). Loss of smell and taste are symptoms of COVID-19, and may be related to cilia dysfunction. Here, we found that the SARS-CoV-2 ORF10 increases the overall E3 ligase activity of the CUL2ZYG11B complex by interacting with ZYG11B. Enhanced CUL2ZYG11B activity by ORF10 causes increased ubiquitination and subsequent proteasome-mediated degradation of an intraflagellar transport (IFT) complex B protein, IFT46, thereby impairing both cilia biogenesis and maintenance. Further, we show that exposure of the respiratory tract of hACE2 mice to SARS-CoV-2 or SARS-CoV-2 ORF10 alone results in cilia-dysfunction-related phenotypes, and the ORF10 expression in primary human nasal epithelial cells (HNECs) also caused a rapid loss of the ciliary layer. Our study demonstrates how SARS-CoV-2 ORF10 hijacks CUL2ZYG11B to eliminate IFT46 and leads to cilia dysfunction, thereby offering a powerful etiopathological explanation for how SARS-CoV-2 causes multiple cilia-dysfunction-related symptoms specific to COVID-19.


Subject(s)
Cilia , SARS-CoV-2 , Ubiquitin-Protein Ligases , Animals , Cells, Cultured , Cilia/metabolism , Cilia/pathology , Cytoskeletal Proteins , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Mice , SARS-CoV-2/pathogenicity , Smell , Ubiquitin-Protein Ligases/metabolism
2.
Eur J Clin Invest ; 51(1): e13443, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-901035

ABSTRACT

BACKGROUND: To reveal detailed histopathological changes, virus distributions, immunologic properties and multi-omic features caused by SARS-CoV-2 in the explanted lungs from the world's first successful lung transplantation of a COVID-19 patient. MATERIALS AND METHODS: A total of 36 samples were collected from the lungs. Histopathological features and virus distribution were observed by optical microscope and transmission electron microscope (TEM). Immune cells were detected by flow cytometry and immunohistochemistry. Transcriptome and proteome approaches were used to investigate main biological processes involved in COVID-19-associated pulmonary fibrosis. RESULTS: The histopathological changes of the lung tissues were characterized by extensive pulmonary interstitial fibrosis and haemorrhage. Viral particles were observed in the cytoplasm of macrophages. CD3+ CD4- T cells, neutrophils, NK cells, γ/δ T cells and monocytes, but not B cells, were abundant in the lungs. Higher levels of proinflammatory cytokines iNOS, IL-1ß and IL-6 were in the area of mild fibrosis. Multi-omics analyses revealed a total of 126 out of 20,356 significant different transcription and 114 out of 8,493 protein expression in lung samples with mild and severe fibrosis, most of which were related to fibrosis and inflammation. CONCLUSIONS: Our results provide novel insight that the significant neutrophil/ CD3+ CD4- T cell/ macrophage activation leads to cytokine storm and severe fibrosis in the lungs of COVID-19 patient and may contribute to a better understanding of COVID-19 pathogenesis.


Subject(s)
COVID-19/pathology , Hemorrhage/pathology , Lung Transplantation , Lung/pathology , Lymph Nodes/pathology , Pulmonary Fibrosis/pathology , B-Lymphocytes/pathology , B-Lymphocytes/ultrastructure , B-Lymphocytes/virology , COVID-19/genetics , COVID-19/metabolism , COVID-19/surgery , Chromatography, Liquid , Flow Cytometry , Gene Expression Profiling , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Killer Cells, Natural/pathology , Killer Cells, Natural/ultrastructure , Killer Cells, Natural/virology , Lung/metabolism , Lung/ultrastructure , Lung/virology , Lymph Nodes/metabolism , Lymph Nodes/ultrastructure , Lymph Nodes/virology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/ultrastructure , Macrophages, Alveolar/virology , Male , Middle Aged , Monocytes/pathology , Monocytes/ultrastructure , Monocytes/virology , Neutrophils/pathology , Neutrophils/ultrastructure , Neutrophils/virology , Nitric Oxide Synthase Type II/metabolism , Proteomics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/surgery , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/pathology , T-Lymphocytes/ultrastructure , T-Lymphocytes/virology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL